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Abstract

This contribution reports the results of the SHREC 2008 track on Stability on Watertight Models. This track
saw six registrations of which only three participants effectively sent the results of their runs.

1 Introduction

A major barrier to a widespread adoption of 3D retrieval techniques in both commercial and academic systems
is the lack of a standardized evaluation of the methods. Whatis the best shape characterization or the best
similarity measure for a given domain? The answer is not trivial at all and depends on several factors. The
aim of SHREC is to evaluate the performance of existing 3D shape retrieval algorithms, by highlighting their
strengths and weaknesses, using a common test collection that allows for a direct comparison of methods.
After the first successful experience of SHREC 2006, from 2007 the contest has moved towards a multi-track
organization, in which different datasets are used to target different retrieval contexts. In this report we present
the results of theStability on Watertight Models Track, whose aim is to evaluate the stability of algorithms with
respect to input perturbations that modify the representation of the object without changing its overall shape
significantly. Examples of such perturbations include geometric noise, varying sampling patterns, small shape
deformations and topological noise.

2 Data Collection and Queries

Two data collections have been provided with this track. Both collections are made of watertight triangle
models in which various kinds of perturbations were introduced. Two sets of models A and B were provided,
the set B containing the models in A. More in detail, the set B is made of 15 classes of 100 models each, for a
total of 1500 models; A contains 1229 models (all the models in B after having excluded the 271 models with
self-intersections).

The set B has been generated as follows. Among the 20 classes used in the SHREC07 trackWatertight
models[2], we have selected 15 classes, namelyhumans, cups, glasses, airplanes, chairs, octopuses, tables,
hands, fishes, birds, springs, armadillos, bustes, mechanical parts, four leg animals(see Figure 1); then, we
perturbed the 20 models in each class with additive Gaussiannoise, uneven re-sampling, small protrusions,
and topological noise (see an example in Figure 2). At the end, each class of the dataset B was made of of 100
models.

The dataset A was obtained removing from B the elements with self-intersections. A command-line version
of the ReMESH software [1] was used to perturb the models and to detect self-intersections.
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Figure 1: The set of original models used to create the datasets A and B.

(a) (b) (c) (d) (f)

Figure 2: (a) A model of the database [2] and its perturbations: (b) Gaussian noise, (c) small protrusions, (d)
uneven re-sampling and (e) adding topological noise.
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Each model was used in turn as a query against the remaining part of the database. For a given query, the
goal of the track is to retrieve the most similar objects. Therelevance, marginal relevance or non-relevance of
the models for a given query, i.e. the ground truth, was established a priori by two classification schemes. The
performances of the algorithms have been evaluated using the measures and tools described in section 5.

3 Participants

Each participant was asked to submit up to 3 runs of his/her algorithm, in the form of dissimilarity matrices;
each run could be for example the result of a different setting of parameters or the use of a different similarity
metric. We remind that the entry(i, j) of a dissimilarity matrix represents the distance between modelsi and j.

This track included 3 groups of participants:

1. Tony Tung and Francis Schmitt with 3 matrices;

2. Thibault Napolon, Tomasz Adamek, Francis Schmitt and Noel E. OConnor with 2 matrices;

3. Dong Xu, Li Cui, Ping Hu, Weiguo Cao and Hua Li, with 3 matrices.

For details on the algorithms and the different runs proposed by the participants, the reader is referred to their
papers, included at the end of this report.

In addition to the three groups of participants listed above, three further registrations to the track were
received from Indriyati Atmosukarto (University of Washington, USA), Julien Tierny (Telecom Lille 1, France)
and Ryutarou Ohbuchi (University of Yamanashi, Japan). These additional participants withdrew the track.

4 Performance Measures

The performance of the methods on the dataset B has been evaluated by considering two different levels of
ground truth. The first classification (coarser) considers in the same class the models in the original class and
their perturbations, that is, each class is made of the 20 original models plus their four perturbations so that a
total of 100 elements per each class was reached. The second classification (finer) considers in the same class
just a single model and its perturbations, that is, each class is made of 5 models: 1 original model plus its four
perturbed versions. Then, this classification subdivides the dataset in 300 classes of five elements.

The two schemes correspond to two possible interpretationsof the stability of the methods: in the first case
we evaluate how much the models and their perturbations are still recognized to belong to the original class
while in the second case the attention is on the model and its perturbations rather than to the other models in
the same original class.

As performance measures of the method we have adopted theprecision andrecall, that are two fundamen-
tal measures often used in evaluating search strategies. Recall is the ratio of the number of relevant records
retrieved to the total number of relevant records in the database, while precision is the ratio of the number of
relevant records retrieved to the size of the return vector [3].

In our contest, for each query the total number of relevant records in the database is 100 for the coarser
classification and 5 for the finer one, that is the size of each class. Starting from here, we evaluate the precision-
recall measures for each query, and then average it over eachclass and over the entire database.

Recall and precision are represented in a diagram, where precision has been computed as average of the
precision scores after each relevant item in the scope. Finally, we consider the area under the diagrams which
is relevant to evaluate the overall performance of a method.

5 Results and Discussions

Each participant sent two or three matrices corresponding to different choices of the parameters. A general
observation is that the performances of each method do not vary significantly across its parameter settings;
hence, it makes sense to consider the best run for each methodand compare the methods according to such
best runs. For each method, the best run was selected as the one with the maximum area under the precision-
recall diagram. For completeness, however, precision-recall diagrams are also depicted all together in a single
graphical panel.
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In all the cases, precision-recall curves shifted upwards and towards the right indicate a superior perfor-
mance; in a number, the performance can be roughly expressedas the area under the graph.

5.1 Performance on the dataset B

Figure 3 shows the recall precision diagrams obtained usingthe coarse classification of the dataset, i.e., the
original models of a class and their perturbations are considered in the same class. Figure 4 shows the recall
precision diagrams obtained using the fine classification ofthe dataset, i.e., a single class of models is made of
the original model and its four perturbations. Finally, Figure 5 details, for each participant, the results reported
in the Figures 3 and 4.
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Figure 3: Comparison of the best final recall precision graphs of each participant over the coarser classification.
Left: all the runs. Right: best runs only.
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Figure 4: Comparison of the best final recall precision graphs of each participant over the finer classification.
Left: all the runs. Right: best runs only.

Interestingly, there is no method that performs better thanthe others in all the conditions. Specifically,
the method by Xu et al. seems to be the less performant within the coarse classification, while it jumps to
the first position in the fine classification. On the contrary,a significant improvement of the performances can
be observed for the methods by Tung et al. and Napoleon et al. when moving from the fine to the coarse
classification.

In order to assess the various methods thoroughly, we have also studied the impact of the various kinds of
perturbation on the performances of each method. To do this,we have evaluated the retrieval performances
of the methods when the original models are used as queries against one perturbation at a time and when the
models obtained using a single perturbation are used as queries against theirselves.
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Figure 5: From top to bottom, performances on the dataset B ofTung et al. (a,b); Napoleon et al. (c,d) and Xu
et al. (e,f) with respect to the coarse (left) and the fine (right) classification.
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Figure 6: Performance of the various methods over the dataset without perturbations (20 original models per
class).

Degradation of the retrieval performance
Method Guassian Noise Small Protrusions Topological Noise UnevenRe-sampling

Tung et al.,Run1 47.92% 34.14% 44.68% 39.44%
Tung et al.,Run2 47.42% 35.90% 44.46% 39.46%
Tung et al.,Run3 46.43% 36.75% 44.32% 38.90%

Napoleon et al.,Run1 44.96% 37.50% 47.83% 36.54%
Napoleon et al.,Run2 48.73% 41.35% 55.75% 37.34%

Xu et al,0.00 30.48% 33.86% 41.85% 24.67%
Xu et al,0.96 36.11% 35.08% 43.27% 29.35%
Xu et al,1.00 44.75% 41.28% 40.29% 31.99%

Table 1: The same type of pertubed models are used both as queries and dataset, each class is made of 20
elements.

For each method, a precision-recall graph was tracked starting from the results on the original models only
(classes of 20 elements, each element used in turn as a query). Then, a second graph was tracked starting from
the results on the models deriving from a single perturbation (again, classes of 20 elements, all with the same
kind of perturbation). When comparing the second graph withthe first one for the same method, the loss of
area (as a percentage) represents the degradation of the method (see Table 1) when both the queries and the
dataset are perturbed.

Figures 7 and 8 show the recall precision diagrams of the runsof the three algorithms that participated to
the track. In this case, the method by Tung et al. seems to be the most stable on average.

Also, a third graph was tracked by comparing original modelswith perturbed models (here the queries are
not perturbed, while the dataset is made of classes of 20 elements with the same kind of perturbation). Once
again, when comparing the third graph with the first one for the same method, the loss of area represents the
degradation of the method (see Table 2) when only the datasetis perturbed. This analysis reveals that the
method by Tung et al. degrades more when the dataset containsGaussian noise, while it is less sensitive to
the presence of small protrusions. Differently, the methodby Napoleon et al. degrades when the models have
topological noise, while it is less sensitive to unbalancedsamplings of the surface. Finally, the method by Xu
appears to be rather stable to unbalanced sampling patterns, while it degrades a little bit more when topological
noise occurs.

5.2 Performance on the dataset A

Similar tests to those presented in Section 5.1 for the complete dataset B, have been performed for the smaller
dataset A, where models with self-intersections were removed. Figure 9 depicts the recall precision diagrams
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Figure 7: Comparison of the different methods over different classes of perturbations.

Degradation of the retrieval performance
Method Guassian Noise Small Protrusions Topological Noise UnevenRe-sampling

Tung et al.,Run1 55.26% 51.49% 48.11% 39.05%
Tung et al.,Run2 54.31% 50.85% 49.12% 40.01%
Tung et al.,Run3 53.68% 50.03% 49.34% 40.30%

Napoleon et al.,Run1 45.20% 54.89% 48.56% 38.04%
Napoleon et al.,Run2 47.63% 53.96% 49.87% 39.30%

Xu et al,0.00 33.48% 51.78% 44.28% 26.63%
Xu et al,0.96 36.65% 54.03% 45.51% 30.22%
Xu et al,1.00 39.95% 55.24% 49.13% 32.27%

Table 2: The original models are used as queries against the corresponding perturbed models, the classes of
both queries and dataset are made of 20 elements.
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Figure 8: Degradation of the performance with respect to thedifferent types of perturbations.
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Figure 9: Comparison of the different methods on dataset A when different perturbations are considered.

of the different runs over the different types of perturbation. Since the number of models with topological
noise in the dataset A is considerably smaller than the otherkind of perturbed models and the recall/precision
perfomance measures depend on the size of the dataset, in Figure 9 we do not report the degradation of the
methods for models perturbed with topological noise.

Furthermore, differently from what we did for dataset B, we did not compare the performance of the
original dataset over the different kinds of perturbation;using precision-recall diagrams for such a comparison,
in fact, would have been not fair because the cardinality of the dataset is not constant across the various kinds
of perturbation. For the same reason, we did not report any table with the level of degradation of the methods
across the different perturbations.
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