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Abstract
This contribution reports the results of the SHREC 2013 track: Retrieval onTextured 3D Models, whose goal is to
evaluate the performance of retrieval algorithms when models vary eitherby geometric shape or texture, or both.
The collection to search in is made of 240 textured mesh models, divided into 10 classes. Each model has been
used in turn as a query against the remaining part of the database. For agiven query, the goal was to retrieve the
most similar objects. The track saw six participants and the submission of eleven runs.

Categories and Subject Descriptors(according to ACM CCS): H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Abstracting methods;

Introduction

The aim of SHREC is to evaluate the performance of existing
3D shape retrieval algorithms, by highlighting their strengths
and weaknesses, using a common test collection allowing for
a direct comparison of methods. In this report the results of
the SHREC 2013 track:Retrieval on Textured 3D Modelsare
presented. The aim of this track of SHREC’13 is to evaluate
the performance of retrieval algorithms when models vary
either by geometric shape or texture, or both. The novelty
of this track is both in the use of textured 3D models and
in the choice of deformations of textures and shapes. For
each model different textures are considered, while shape
perturbations include geometric noise, non-rigid and non-
isometric shape deformations.

1. Data Collection and Queries

The dataset is made of 240 watertight mesh models, grouped
in ten classes. Each class contains six null models, corre-

† Organizer of the track. Dataset and evaluation measures are avail-
able athttp://wwww.ge.imati.cnr.it/shrec13.

sponding to two base meshes endowed with three differ-
ent textures. Then, four transformations are applied to each
null shape, including one non-rigid deformation, two non-
metric-preserving deformations and one additive Gaussian
noise perturbation. An example of the considered textures
and geometric deformations is given in Figure1.

The whole dataset is pre-classified using a two-level
ground truth: if two models share both shape and texture
they are highly similar; if they share only shape they are
marginally similar; otherwise, they are dissimilar. For the
present track, each model has been used in turn as a query
against the remaining part of the database, with the goal of
retrieving the most similar objects.

2. Participants

Each participant was asked to submit up to 3 runs of her/his
algorithm, in the form of dissimilarity matrices: The entry
(i, j) of each matrix represents the distance between models
i and j in the associated run. Each run could be either the
result of a different setting of parameters or the use of a dif-
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Figure 1: Some members of the four leg animal class of the proposed dataset. Null models have been processed using MeshLab
[Vis] and Remesh [AF06].

ferent similarity measure. Six groups took part in this track,
for a total of 11 submitted runs. More precisely:

1. M. Abdelrahman, M. El-Melegy and A. Farag from the
University of Louisville (USA) participated with two
runs (A1 andA2). Their method is detailed in Section3.1;

2. K. Berger, from the Oxford e-Research centre (UK) par-
ticipated with one run (Be). His method is detailed in Sec-
tion 3.2;

3. J.-B. Zhang, C.-X. Xu and Y.-J. Liu from the Tsinghua
University (the People’s Republic of China) participated
with one run (Zh). Their method is detailed in Sec-
tion 3.3;

4. A. Giachetti from the University of Verona (Italy), partic-
ipated with one run (Gi). His method is detailed in Sec-
tion 3.4;

5. H. Guermoud, F. Lefebvre, L. Chevallier and
JR. Vigouroux from the technicolor Research & In-
novation in Cesson Sévigné (France) participated with
three runs (G1, G2 andG3). Their method is detailed in
Section3.5;

6. S. Velasco-Forero (ITWM Fraunhofer Institute, Ger-
many) and J. Angulo (CMM-Centre de Morphologie
Mathématique, Mathématiques et Systèmes, MINES
ParisTech, France) participated with three runs (V1, V2
andV3). Their method is detailed in Section3.6.

3. Description of the methods

In this section we describe the methods which were used by
the participants in their runs.

3.1. Textured 3D models Classification using Scale
Invariant Heat Kernels

We consider the 3D models in the dataset as deformable
objects. Modeling these non-rigid shapes is a very chal-
lenging problem. It needs more work to compensate for

the degrees of freedom resulting from local deformations.
Reuter et al. [RWSN09] used the Laplacian spectra as in-
trinsic shape descriptors, and they employed the Laplace-
Beltrami spectra as “shape-DNA” or a numerical fingerprint
of any 2D or 3D manifold (surface or solid). They proved
that shape-DNA is an isometry-invariant shape descriptor.
Recently, Sun et al. [SOG09] proposed heat kernel signa-
tures (HKSs) as a deformation-invariant descriptors based on
diffusion of multi-scale heat kernels. HKS is a point based
signature satisfying many of the good descriptor properties,
but suffers from sensitivity to scale. Bronstein et al. [BK10]
solved the HKS scale problem through a series of transfor-
mations. The same research group has recently introduced
the Shape Google approach [BBGO11] based on the scale-
invariant HKS. The idea is to use HKS at all points of a
shape, or alternatively at some shape feature points, to rep-
resent the shape by a Bag of Features (BoF) vector. Sparsity
in the time domain is enforced by pre-selecting some values
of the time. In this work we present an approach for shape
matching and retrieval based on scale invariant heat kernel
signatures (SI-HKS). Sun et al. [SOG09] proposed to use
the HKS as a local shape descriptor

h(x, t) = Ht(x) =
∞

∑
i=1

e−λi tϕ2
i (x), (1)

with λi and ϕi the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator, respectively. The HKS has sev-
eral desired properties [SOG09]: It is intrinsic and thus
isometry-invariant (two isometric shapes have equal HKS),
multi-scale and thus captures both local features and global
shape structure. Also, it is informative: Under mild condi-
tions, if two shapes have equal heat kernel signatures, they
are isometric. The descriptor proposed in this work is based
on BoF representation of the HKS in frequency domain
combined with the first 15 normalized eigenvalues of the
Laplace-Beltrami operator. We propose a novel method to
achieve scale-invariance of HK which is shown to be noise-
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robust. Scale invariance is a desirable property of the shape
descriptor, which can be achieved by many ways. We pro-
pose a novel local scale normalization method based on sim-
ple operations. It was shown [BBGO11] that scaling a shape
by a factorβ results in changingh(x, t) to β2h(x,β2t). We
propose to apply the Fourier transform (Ft) directly. Taking
the amplitude of the Ft, the effect of the multiplicative con-
stantβ2 is eliminated by normalizing|H′(w)| by the sum of
the amplitudes of the FT components. The amplitudes of the
first significant Ft components (we normally use 20) are em-
ployed to construct the scale-invariant shape descriptor. This
proposed method eliminates the scale effect without having
to use the noise-sensitive derivative operation or the loga-
rithmic transformation that both were used in [BBGO11].
Thus our method is simpler, more computational-efficient
and more robust to noise. Eventually we use theL1-norm for
classification. We use the first non-trivial Laplace-Beltrami
eigenfunction to detect a small number of sparse critical
points on the shape surface. These points are robust to the
shape class, and their number can itself be used as one of
the discriminatory features among the various classes. We
use the number of these points to re-arrange the retrieval re-
sults. Then we used the color distribution as a third step to
re-arrange the results to get similar texture object first.

3.2. An algorithm for spatial and texture retrieval

Description. The key idea is to search for similarities both
in the spatial and the texture domain. A special challenge is
posed by the fact that the texture is not trivially defined as
a 2D map but rather defined as a vertex coloring in a closed
2D mesh embedded in 3D.

... ...

1

Genus

2, . . . ,7

Color histogram Spatial
Eigenmodes

8, . . . ,27

Texture
Eigenmodes

28, . . . ,33

Figure 2: The feature descriptor consists of33 entries, the
first entry depicting the genus, the next 6 entries depicting
the hue histogram, the following 20 entries depicting the ge-
ometric eigenmodes and the last 6 entries depicting the tex-
ture eigenmodes.

Thus we propose to classify each mesh with a feature de-
scriptor of lengthn = 1+ 6+ 20+ 6 = 33. The first entry
simply describes the genus of the mesh, to help discrimi-
nating between fundamentally different objects, like a chair
(genus 3), a vase with a handle (genus 1) or animals (genus
0). We compute it with

(#vertices+# f aces−3/2∗# f aces)−2
2

(2)

Next, the entries 2-7 denote the hue histogram of vertex
colors. We therefore convert the list of vertex colors from
RGB space to HSV space and extract the first channel. It

appears reasonable to decide for 6 bins, i.e. 60◦ spacing be-
tween each color bin, in order to discriminate between the
shades Red, Orange, Yellow, Green, Blue and Indigo. The
color binning helps to distinguish between objects that have
clearly different textures, e.g. a brown or green texture, even
when the underlying mesh is equal. Afterwards we perform
an eigenmode decomposition on the mesh. In order to do so,
we compute the Laplacian of the mesh as it is an high pass
operator that computes second order derivatives. Specifically
we use the distance-type Laplacian. Afterwards the first 20
eigenvalues are derived and stored. This way we get a sinu-
soidal representation of the mesh, that helps characterizing
low- and high-frequent properties.

Finally we seek to classify the texture with respect to its
topographic representation on the mesh. In other words, we
want to keep relations between colors on the mesh. Thus we
look at the vertex connections, namely the faces, in color
space, instead of the Euclidean Space. Again, we compute
Laplacian and eigenmodes. However, we only keep the six
first eigenvalues and store them in the descriptor vector.

We create the dissimilarity matrix by comparing each de-
scriptor with each other using theL2-norm.

Implementation and computation complexity. We imple-
mented the proposed algorithm in Matlab using thetoolbox
graph[Pey]. The discriptors are precomputed, and the norm-
based dissimilarity computation is done inO(n2), with n the
number of input meshes. It can be seen that the eigenmode
computation is the main bottleneck of the algorithm, as it
has superlinear complexity. There is a tradeoff between the
computation time and the accuracy of the spectral descrip-
tion. Usually, mesh consisting of 50000 vertices might re-
quire 9000 basis vectors for a full representation of minor
details in the mesh. However, as we seek to have the feature
descriptor vector to give an overall description of the main
appearance of the mesh, we deem the 20 first basis vectors
as being sufficient.

3.3. Measuring Distance between 3D Models Based on
Geometry and Color Features

The proposed method can be treated as a simplified version
of the one in [LZL∗12]. We sample the model using points
in geometry and color feature space, then these sampling
points are optimally clustered. After calculating the feature
histogram using these clustered sampling points, we get the
shape distribution of the model. Comparing the shape distri-
butions results in the dissimilarity between two models.

Constructing shape distribution. First, we sample the
model in the regions of either geometry-high-variation
or color-high-variation. Secondly, we cluster the sampling
points into several classes by using a modified ISODATA al-
gorithm. Finally, we calculate the feature histogram of each
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model using these clustered sampling points, and we can get
a shape distribution for each model. See details in [LZL∗12].

We extract geometric features based on curvature infor-
mation since it is invariant in Euclidean and similarity trans-
formation. For color feature extraction, we use the CIE-LAB
color space that is designed to approximate human vision
and is more perceptually uniform than RGB and HSV color
space.

Suppose that in the model there arec clusters andFi is
the set of freature points in theith cluster with the number
of points inFi beingni . For each pointfip ∈ Fi , wherei 6=
j, i, j = 1,2, ...,c, p = 1,2, ...,ni , q = 1,2, ...,n j , compute
the Euclidean distancedip jq = ‖ fip − fiq‖ and store all the
distances in an arrayD. Then convert the normalized array
D into a histogram to get a shape distribution for each model.

Comparing shape distribution. There are some ways
mentioned in [OFCD01] to measure the difference be-
tween shape distributions, such as (Minkowski)LN norms,
Kolmogorov-Smirnov distance etc. In our experiments, we
choose theL2 norms of the probability density func-
tions to measure the shape distributions, i.e.dist( f ,g) =
√∫

| f −g|2, which obviously satisfies the three conditions
in the definition of metric.

Since the probability density function is represented by
the shape distribution generated above (combined with an-
other parameter to create different level of approaching, see
details in [OFCD01]), the function is piecewise linear, thus
the integration is actually applied on a first degree function
(or even a constant), which lead to a direct calculation of a
second (first) degree polynomial.

Performance. We run the program on a machine with Intel
Core2 Duo T8100, 4GB memory and Windows 7 64-bit OS.
The sampling number decides accuracy and efficiency.

During our experiment, a sampling number less than
about 10.000 can not achieve a good result, while more than
1.000.000 sampling will cost too much time to finish the
whole dataset. Considering both sides, we choose 1024×64
sample points to run the program. The program will run
about 10s for each pair of the models in the given dataset
in average under the condition above.

3.4. Color-weighted Histograms of Area Projection
Transform

This method is a simple variation of the Histograms of Area
Projection Transform technique proposed in [GL12]. This
method is based on computing a spatial map encoding ap-
proximated spherical symmetry at different selected scales,
called Multiscale Area Projection Transform. This map is
obtained by computing for each radius of interest the value

APT(~x,S,R,σ) = Area(T−1
R (kσ(~x)⊂ TR(S,~n))) (3)

whereS is the surface of interest,TR(S,~n) is the parallel sur-
face ifSshifted along the normal vector (in our case only in
the inner direction),kσ(~x) is a sphere of radiusσ centered in
the generic point~x where the map is computed. Values at dif-
ferent radii are then scaled in order to have a scale-invariant
behavior, creating the Multiscale APT map (MAPT):

MAPT(x,y,z,R,S) = α(R) APT(x,y,z,S,R,σ(R)) (4)

whereα(R) = 1/4πR2 andσ(R) = c ·R (0 < c < 1). The
transform is easily implemented for surface meshes by sam-
pling points on the model faces, associating a surface value,
shifting this point at a distanceRalong the normal and there
adding a normalized surface contribution to the local voxel
value. The resulting map is then filtered using the spherical
kernel. In [GL12] it is shown that histograms of MAPT com-
puted inside the object can be used with success as global
shape descriptors. Map values, ranged in the interval[0,1]
are quantized in 12 bins and histograms computed at the dif-
ferent considered scales (radii) are concatenated creating a
unique descriptor. Shapes are compared by measuring the
histogram distance with the Jeffrey divergence.

Here we propose a new descriptor by concatenating to
the previously described histogram, other three similar his-
tograms obtained from “color weighted” APT maps, simply
computed multiplying the area contribution of the surface el-
ements by the red, green and blue components respectively
(scaled in the interval[0,1]). In this way also the texture in-
formation should be encoded in the descriptor.

In our test radii and sampling grids are computed as in
[GL12]: the isotropic sampling grid is taken proportional to
the cubic root of the volume of each model (s= cbrt(V)/40),
and the sampled radii are integer multiples ofs (10 values
from 2s to 11s). The radiusσ is taken as in the original paper
equal toR/2 for all the sampledR.

With these choices, the final descriptors of shapes are vec-
tors composed by 480 elements.

3.5. Textured 3D objects retrieval based on 2D
multi-view and bag-of-features approach

Three methods are presented for a textured 3D model re-
trieval, all of them are based on the visual bag-of-features
approach. Two steps take a part of the generic framework
presented on Figure3. Offline processing steps correspond
to training a visual codebook and indexing. Considering
a training 3D model dataset, DAISY [TLF10] and SURF
[BETVG08] descriptors are used to extract local features
from a range of 2D images rendered fromN points of views
(in our caseN = 60) located on vertices of a polyhedron
[OOFB08, LGS10]. The visual bag-of-features is clustered
to provide a visual dictionary. The latter is used for index-
ing 3D models of the dataset. For each one of them, local
features are extracted and associated to the nearest visual
word thanks to the visual dictionary calculated previously.
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Figure 3: A sketch of the generic framework described in
Section3.5

At the end, each 3D model is represented by a histogram
of occurrences of visual words. The online processing steps
correspond to querying and matching 3D models through the
dataset. For a given 3D object to query, local features are ex-
tracted and a distribution of visual code word is provided as
mentioned previously in the indexing phase. Then, a similar-
ity histogram distance is calculated between the query and
the database content. 3D returned models are ranked from
the smallest distance to the biggest one.

Pose normalization and Image rendered.Prior to pro-
cessing cited in the generic framework (Figure3), a pose
normalization is applied to the 3D models contained in the
database. Hence, 3D models are centered on their mass cen-
ter, positioned with respect to there canonical axis and held
in unit sphere. Depth and texture representations are used as
rendering modes. Ambient light is chosen for textured model
representation.

DAISY and SURF descriptors. DAISY descriptor was in-
troduced in [TLF10], finding inspiration from SIFT [Low04]
and GLOH [MS05]. It is extracted from local regions. In or-
der to be efficiently computed at every pixel location, the
weighted sum of gradients norms used for SIFT and GLOH
are replaced by convolutions of the gradients in specific di-
rections with Gaussian filters. This leads anyhow to the same
invariance as SIFT and GLOH histogram building.

The SURF [BETVG08] descriptor was designed to be
faster than SIFT. It relies on hessian matrix computed on the
integral image to detect maxima, keypoints, by the detector
and on the sums of 2D Haar wavelet responses calculated on
a window that surrounds the detected keypoints.

Methods and Implementations. In the first method, the 3D
model is rendered in depth mode and a range of 2D images

(N = 60) are captured from vertices of a truncated icosahe-
dron. We use the OpenCv bag-of-features workflow [Ope],
salient keypoints were provided by SURF detector and de-
scribed with a DAISY descriptor. Prior to that, a visual code-
book (dictionary) was trained offline and contained 2048
bins. Thus, each view of a given 3D model is described
by a histogram of occurrence of codeword of the dictio-
nary. Bin to bin histogram summation of theN views pro-
vides a single fixed bit length signature for each 3D model
of the database. Dissimilarity matrix of distances between
models of the database is calculated following the rules an-
nounced in the SHREC 2013 contest. The Bhattacharya dis-
tance is used to compare two 3D models. In the second and
third method, distance calculation between two models is a
weighted summation of two distancesd1 andd2. Distance
d1 is obtained from 3D model textured rendering and dis-
tanced2 is issued from 3D model depth rendering. SURF
descriptor is used in the second method while DAISY de-
scriptor is used in the third one. The same OpenCv workflow
is used as explained above.

3.6. 3D Shape + Texture Retrieval

The basic idea of this approach is to compute two features: A
shape- and a color-based descriptor. Denote a given colored
shapeS = (S,S), whereS is the mesh information andS is
its color vertices information.

Shape descriptor. 3D shapes are represented by a geodesic
distance matrix (GDM). Following [SFH∗09] the first 40
eigenvalues of the GDM are used as shape descriptor and
then compared using the mean normalized Manhattan dis-
tance. We denote this “mesh" distance between two shapes
asdistshape(S1,S2).

Colour-Texture feature. The basic idea is to compute the
average Earth mover’s distance between RGB histograms for
two given shapes.

Earth mover’s distance (EMD). The earth mover’s dis-
tance (also called Wasserstein distance) between two func-
tions p and q (where it is assumed that the area under
the graph of both functions is the same) is the least work
that is required to move the region lying under the graph
of p to that of q [RTG00]. This can be formalized in the
case of two histograms having the same range (m-bins)
as a linear programming task, and implemented accord-
ingly. In our experiments, we have used the fast robust im-
plementation given by [PW09]. Thus, for two shapes, we
define the associated colour distance asdistRGB(S1,S2) =

∑k EMD(hist(Sk
1),hist(Sk

2))/3, wherehist denote the his-
togram and the power inSk is the colour channel.

Shape and Texture descriptor.Given two shapesS1 =
(S1,S1) andS2 = (S2,S2), three measures have been de-
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fined:

D1(S1,S2) =
distshape(S1,S2)+distRGB(S1,S2)

2
D2(S1,S2) = min(distshape(S1,S2),distRGB(S1,S2))

D3(S1,S2) =
√

distshape(S1,S2)∗distRGB(S1,S2)

We note that both shape and color distance have been nor-
malized to have a maximum equal to one.

4. Evaluation measures and results

The retrieval performance of each submitted run has been
evaluated according to a ternary relevance scale: If a re-
trieved object shares both shape and texture with the query,
then it is highly relevant; if it shares only shape, it is con-
sidered marginally relevant; otherwise, it is not relevant.
The evaluation process has been thus based on a 2-level
ground-truth, by using several evaluation measures: Average
precision-recall curves, Nearest Neighbor (NN), First Tier
(FT), Second Tier (ST), Normalized Discounted Cumulated
Gain (NDCG) and Average Dynamic Recall (ADR).

Note that, because of the multi-level relevance assess-
ment of each query, most of the evaluation measures have
been split up as well. “Highly relevant” evaluation measures
are based on the highly relevant items only, while “rele-
vant” evaluation measures are based on all the relevant items
(highly relevant items + marginally relevant items). We pro-
vide in what follows a brief explanation of each evaluation
measure, together with the associated evaluation results. The
runs of all the track’s participants are labeled as specified in
Section2.

Average precision-recall curves.Precision and recall are
common measures to evaluate information retrieval systems.
Precision is the fraction of retrieved items that are relevant
to the query. Recall is the fraction of the items relevant to the
query that are successfully retrieved. BeingA the set of all
the relevant objects andB the set of all the retrieved object,

Precision=
|A∩B|
|B|

, Recall=
|A∩B|
|A|

. (5)

Note that the two values always range from 0 to 1. For a
visual interpretation of these quantities it is useful to plot
a curve in the reference frame recall vs. precision. We can
interpret the resulting curve as follows: The larger the area
below such a curve, the better the performance under exam-
ination. In particular, the precision-recall curve of an ideal
retrieval system would result in a constant curve equal to 1.

For each query, we thus have a precision-recall curve.
By taking the average on all the queries, we get the aver-
age precision-recall curve. Figure4 shows the performances
of all the runs with respect to the average precision-recall
curve, both “relevant” and “highly relevant”.

Relevant Highly Relevant
Run NN FT ST NN FT ST ADR

A1 0.963 0.588 0.681 0.515 0.553 0.710 0.374

A2 0.958 0.603 0.720 0.508 0.561 0.730 0.380

Be 0.083 0.135 0.229 0.019 0.175 0.209 0.173

Zh 0.342 0.238 0.353 0.174 0.135 0.214 0.104

Gi 0.971 0.574 0.715 0.788 0.658 0.748 0.470

G1 1.00 0.708 0.873 0.417 0.526 0.799 0.379

G2 0.992 0.575 0.708 0.898 0.733 0.893 0.508

G3 0.983 0.632 0.801 0.519 0.579 0.772 0.415

V1 0.871 0.422 0.583 0.807 0.511 0.633 0.413

V2 0.996 0.480 0.606 0.879 0.764 0.904 0.520
V3 0.971 0.476 0.634 0.909 0.733 0.863 0.511

Table 1: Retrieval performances on the whole dataset. For
each evaluation measure, best results are in bold text.

Nearest Neighbor, First tier and Second tier.These eval-
uation measures aim at checking the fraction of models in
the query’s class also appearing within the topk retrievals.
Here,k can be 1, the size of the query’s class, or the dou-
ble size of the query’s class. Specifically, for a class with|C|
members,k = 1 for the nearest neighbor (NN),k = |C| −1
for the first tier (FT), andk = 2(|C|−1) for the second tier
(ST). The final score is an average over all the models in the
database. Not that all these values necessarily range from 0
to 1. Table1 reports the performances for all the runs ac-
cording to these measures, with respect to the “relevant” and
“highly relevant” classifications.

Average dynamic recall. The idea is to measure how many
of the items that should have appeared before or at a given
position in the result list actually have appeared. The aver-
age dynamic recall (ADR) at a given position averages this
measure up to that position. Precisely, for a given query let
A be the set of highly relevant classified items, and letB be
the set of the relevant items. ObviouslyA⊆ B. Also, for our
dataset|B| is always equal to 24. The ADR is computed as:

ADR =
1
|B|

|B|

∑
i=1

r i

i
,

wherer i is defined as

r i =

{

|{highly relevant items in the firsti retrieved items}|
i , if i ≤ |A|;

|{relevant items in the firsti retrieved items}|
i , if i > |A|.

For all participants, the last column of Table1 reports the
ADR measure averaged on all queries.

Normalized discounted cumulated gain.It is first conve-
nient to introduce thediscounted cumulated gain (DCG). Its
definition is based on two assumptions. First, highly relevant
items are more useful if appearing earlier in a search engine
result list (have higher ranks); Second, highly relevant items
are more useful than marginally relevant items, which are in
turn more useful than irrelevant items.

DCG originates from a more primitive measure calledcu-
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Figure 4: Performances of all the runs with respect to the average precision-recall curve, both relevant and highly relevant.
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Figure 5: Performances of all the runs with respect to the
NDCG measure.

mulated gain (CG). The CG at a positionp is defined as

CGp =
p

∑
i=1

reli ,

with reli the graded relevance of the result at positioni.
The value computed with the CG function is unaffected by
changes in the ordering of search results. Based on the two
assumptions made above about the usefulness of search re-
sults, DCG is used in place of CG for a more accurate mea-
sure. Precisely, the DCG at a positionp is defined as:

DCGp = rel1+
p

∑
i=2

reli
log2(i)

.

Obviously, the DCG is query-dependent. To overcome this
problem, we normalize the DCG to get thenormalized dis-
counted cumulated gain (NDCG). This is done by sorting

elements of a retrieval list by relevance, producing the max-
imum possible DCG till positionp, also calledideal DCG
(IDCG) till that position. For a query, the NDCG is com-
puted as

NDCGp =
DCGp

IDCGp
.

In the present evaluation, the NDCG values for all queries
are then averaged to obtain a measure of the average perfor-
mance for each submitted run. Note that for an ideal run, the
DCGp will be the same as the IDCGp producing an NDCG
of 1. All NDCG calculations are then relative values on the
interval 0 to 1 and so are cross-query comparable. Figure5
shows the performance evaluation for all runs according to
the NDCG measure as a function of the rankp.

5. Discussion

The experimental results offer several hints for discussion.

NDCG and ADR provide anoverall evaluation of the ca-
pability owned by the proposed methods in interpreting the
2-level classification of the dataset. On the one hand, the
NDCG results in Figure5 show encouraging results from
almost all the runs submitted to the track, thus revealing that
the current scenario about retrieval methods for textured 3D
models is very lively and promising. On the other hand, the
ADR results in Table1 emphasize that the dataset was chal-
lenging and supplies for performance improvements. Indeed,
the best ADR scores fluctuate around 0.5, the best possible
ADR value being 1.

Results in Table1 about the nearest neighbor measure
(NN) interestingly reveal that all runs degrade passing from
the “relevant” to the “highly relevant” evaluation. This
means that, as for the first retrieved item, the proposed meth-
ods foster in general the texture-based retrieval instead of the
geometry-based one, which is actually in contrast with the

c© The Eurographics Association 2013.
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relevance scale underlying the dataset classification. Never-
theless, such a behavior is progressively redressed when con-
sidering a larger number of retrieved models, that is, passing
from the NN to the second tier (ST) measure through the first
tier (FT) one, see once more Table1. Indeed, along this path
we can observe that, as for the “highly relevant” evaluation,
more and more runs outperform their performances in the
“relevant” situation.

Finally, looking at the precision-recall curves in Figure4,
we can deduce that:

• The strategy used for runsV1, V2 andV3 to deal with
color information (see Section3.6) appears to be promis-
ing to improve the retrieval performance by taking mod-
els’ texture into account;

• The bag-of-feature approach proposed with runsG1, G2
andG3 (see Section3.5) seems to be flexible and modular
enough to accomplish good performances both in generic
and textured 3D models retrieval;

• The HKS-based strategy exploited by runsA1 andA2 (see
Section3.1) obtained noticeable results even in the pres-
ence of non-isometric model deformations, and appears to
be scalable with small efforts to the case of textured 3D
models retrieval;

• The color weighted MAPT (runGi, see Section3.4)
emerges as a valuable technique to get shape descriptors
which incorporatea priori the texture information. As
mentioned by the author, performances could be improved
by optimizing scale selection, binning or histogram com-
parison methods according to the task at hand.

6. Conclusions

In this paper, the new track of SHREC’13 onRetrieval
on Textured 3D Modelsis introduced, describing how the
dataset was built and the kind of deformations made on a
set of textured models. This is the first time that a track of
SHREC specifically focuses on the performance evaluation
of retrieval algorithms when models vary either by geomet-
ric shape or texture, or both. The experimental results show
that the current scenario about retrieval methods for textured
3D models is promising. Indeed, the submitted runs obtained
in general encouraging results. Finally, it is to be hoped that
this new benchmark will promote further investigation on
the comparison and retrieval of textured models.
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